Center for Isotopic Research on Cultural and Environmental heritage  CIRCE



INNOVA  suggests The Center for Isotopic Research on Cultural and Environmental heritage  CIRCE, established in 2005 with the aim of performing basic and applied research, as well as service activity, using isotopic methodologies applied to the diagnostics of cultural heritage artifacts and to the study of environmental processes. Mass spectrometry of isotopes of the most abundant elements in nature is a powerful investigation tool, widely used in sciences applied to the cultural and environmental heritage diagnostics.CIRCE operates an AMS system based on a 3MV tandem accelerator, reaching a state-of-the-art precision and accuracy level. Coupled with an ultralow contamination sample treatment laboratory, this facility is the heart of a large number of advanced research programs and of a structure able to offer a high-quality routine service for archaeology, earth science, forensics, nuclear safeguards.

The presence in the environment of long lived cosmogenic isotopes allows to significantly extend the investigation possibilities, provided the isotopic ratio measurement sensitivity is pushed to extremely high levels, not accessible to conventional mass spectrometry. Accelerator Mass Spectrometry (AMS) is a sophisticated method which allows ultrasensitive measurements, the most widely known being radiocarbon dating. Dating of finds with age old up to 50 ky can be performed if they contain organic Carbon. In this case the 14C/12C isotopic ratio, constant and equal to the atmospheric CO2 value during the life of the organism, starts decreasing following an exponential law with a half-life of 5730 y. The measurement of the present isotopic ratio yields in this way the time elapsed since the death of the organism.  The utilization of natural chronometers such as 14C expands over a large variety of scientific investigation fields from archaeology to climatology, from hydrology to oceanography, from paleontology to paleomagnetism, from environmental physics to volcanology .More in general, AMS allows ultrasensitive measurements of the concentration of rare isotopes, which represent an extremely sensitive indicator of natural processes which characterized in the past the terrestrial ecosystem as well as of human activity.